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Abstract. The Ablowitz–Ladik hierarchy (ALH) is considered in the framework of the inverse-
scattering approach. After establishing the structure of solutions of the auxiliary linear problems,
the ALH, which has been originally introduced as an infinite system of differential-difference
equations, is presented as a finite system of difference-functional equations. The representation
obtained, when rewritten in terms of Hirota’s bilinear formalism, is used to demonstrate relations
between the ALH and some other integrable systems, the Kadomtsev–Petviashvili hierarchy in
particular.

1. Introduction

Among various concepts of the theory of integrable nonlinear systems one of the most
fruitful is a viewpoint when each integrable equation is considered as member of an
infinite number of related equations—hierarchy [1]. So, for example the famous nonlinear
Schr̈odinger equation is the simplest equation of the Ablowitz–Kaup–Newell–Segur (AKNS)
hierarchy, its discrete integrable analogue is a member of the Ablowitz–Ladik hierarchy
(ALH), etc. A distinguishing feature of integrable hierarchies is that corresponding flows
commute, i.e. all its equations are compatible. This enables us to consider a hierarchy as
one system of equations, i.e. to consider an infinite number of, say, (1+ 1)-dimensional
partial differential equations (PDEs) (as, for example, in the case of the AKNS hierarchy) or
differential-difference equations (DDEs) (in the case of the ALH) as a (1+∞)-dimensional
problem for functions depending on an infinite number of variables. Such an approach has
been intensively studied for almost all ‘classical’ integrable equations and has been shown to
be a rather powerful tool for tackling integrable nonlinear problems. A logical continuation
of this method is to ‘convert’ this infinite number of PDEs or DDEs into one or several
functional equations which relate functions taken at different values of its arguments, say,
z andz± ϕ(λ) whereλ is some auxiliary parameter (in some contexts such equations have
been called ‘addition formulae’, in soliton theory they are also known as ‘bilinear identities
for τ -functions’). These functional equations can be viewed as generating functions for the
hierarchy considered: expanding them in power series inλ one can obtain all equations of
the hierarchy. In what follows I will use the term ‘functional’ for such a representation,
bearing in mind that we are dealing with thefunctional equations which are equivalent to
(i.e. represent) a hierarchy of PDEs or DDEs. Such functional equations naturally appear
in the Sato theory of soliton equations [2]. Also, this question, especially in the case of the
Kadomtsev–Petviashvili (KP) hierarchy, has been discussed in connection with the problem
of characterization of the Jacobi varieties (see, e.g. [3, 4] and references therein). Some

0305-4470/98/031087+13$19.50c© 1998 IOP Publishing Ltd 1087



1088 V E Vekslerchik

recent examples of the functional representation of integrable systems one can find, for
example, in [5–8] (KP and dispersionless KP hierarchies) and [9, 10] (Toda hierarchy).

In this paper the case of the ALH will be considered. After outlining some basic
facts related to the inverse scattering transform (IST) (section 2) and discussing more
comprehensively corresponding linear problems (section 3) the functional representation
of the ALH will be obtained (section 4). In section 5 the results obtained will be rewritten
in terms of Hirota’s bilinear operators. This will expose some relations between the ALH
and other integrable hierarchies, KP hierarchy in particular.

2. Zero curvature representation of the ALH

The ALH is an infinite set of ordinal DDEs, that has been introduced by Ablowitz and Ladik
in 1975 [11]. The most well known of these equations is the discrete nonlinear Schrodinger
equation (DNLSE)

iq̇n = qn+1− 2qn + qn−1− qnrn (qn+1+ qn−1) (1)

and the discrete modified KdV equation (DMKdV),

q̇n = pn(qn+1− qn−1) (2)

where

pn = 1− qnrn rn = −κq̄n κ = ±1 (3)

(see e.g. [12]). All equations of the ALH can be presented as the compatibility condition
for the linear system

9n+1 = Un9n (4)

∂t9n = Vn9n (5)

where∂t stands for∂/∂t , which leads to their zero-curvature representation (ZCR):

∂tUn = Vn+1Un − UnVn. (6)

In the standard IST approach developed in [11] the matrixUn for the ALH is given by

Un =
(
λ rn
qn λ−1

)
(7)

whereλ is the auxiliary constant parameter. For the elements of the matrixVn,

Vn =
(
an bn
cn dn

)
(8)

one can then obtain from (6), the system of equations

λ(an+1− an) = −qnbn+1+ rncn (9)

λ−1(dn+1− dn) = qnbn − rncn+1 (10)

∂tqn = qn(dn+1− an)+ λcn+1− λ−1cn (11)

∂t rn = rn(an+1− dn)− λbn + λ−1bn+1. (12)

According to [11], they can be chosen as Laurent polynomials inλ in such a way that
(9)–(12) hold automatically for allλ’s provided theqn’s and rn’s satisfy some differential
relations. It should be noted that one can obtain an infinite number of the matricesVn
(which are Laurent polynomials of different order) which leads to the infinite number of
differential equations∂qn/∂t = F ln, (l = 1, 2, . . .). According to the now widely accepted



Functional representation of the Ablowitz–Ladik hierarchy 1089

viewpoint, as mentioned in the introduction, one can consider theqn’s andrn’s as depending
on the infinite number of ‘times’,qn = qn(t1, t2, . . .) and consider thelth equation of the
ALH as describing the flow with respect to thelth variable,∂qn/∂tl = F ln. I will also
adhere to the conception ofqn’s being functions of the infinite number of variables, but my
approach will differ slightly from the classical one in the following aspect. Traditionally
it is implied that all ‘times’tl are real, which is grounded from the standpoint of physical
applications, and is convenient in the framework of the inverse-scattering technique. I will
use, instead of real ‘times’tl , some complex variableszj , z̄j (j = 1, 2, . . .), which, as will
be shown below, exhibit in a more transparent way some intrinsic properties of the ALH. A
simple analysis yields that the family of possible solutions of the system (9)–(12) (and hence
the equations of the hierarchy) can be divided into two subsystems. One of them consists
of V -matrices which are polynomials inλ−1 (I will term the corresponding equations as
a ‘positive’ part of hierarchy) and the other consist of matrices which are polynomials in
λ (‘negative’ subhierarchy) while in the standard ‘real-time’ approach all theV -matrices
contain terms proportional toλm together with the terms proportional toλ−m (m > 0). Let
us consider first the ‘positive’ case. An infinite number of polynomial in 1/λ solutionsV jn
(j = 1, 2, . . .) possesses the following structure:

V jn = λ−2V j−1
n +

(
λ−2α

j
n λ−1β

j
n

λ−1γ
j
n δ

j
n

)
(13)

where the elementsαjn, . . . , δ
j
n satisfy the equations

α
j

n+1− αjn = −qnβjn+1+ rnγ jn (14)

δ
j

n+1− δjn = qnβjn − rnγ jn+1 (15)

∂jqn = qnδjn+1+ γ jn+1 = qnαj+1
n + γ j+1

n (16)

∂j rn = −rnδjn − βjn = −rnαj+1
n+1 − βj+1

n+1 (17)

with ∂j = ∂/∂zj . Rewriting this system as

αjn = −δj−1
n (18)

βjn = βj−1
n−1 + rn−1(δ

j−1
n−1 + δj−1

n ) (19)

γ jn = γ j−1
n+1 + qn(δj−1

n + δj−1
n+1) (20)

δjn − δjn+1 = −qnβjn + rnγ jn+1 (21)

and choosing

a0
n = 0 b0

n = 0 c0
n = 0 d0

n = −i (22)

we can consequently obtain

α1
n = 0

β1
n = −irn−1

γ 1
n = −iqn

δ1
n = irn−1qn

α2
n = −irn−1qn

β2
n = −irn−2pn−1+ ir2

n−1qn

γ 2
n = −ipnqn+1+ irn−1q

2
n

δ2
n = irn−2pn−1qn + irn−1pnqn+1− ir2

n−1q
2
n

(23)

and, in principle, all other matricesV j
n . This leads to the infinite system of equations for

qn, rn, some of the first are

∂1qn = −ipnqn+1 (24)

∂1rn = irn−1pn (25)
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∂2qn = irn−1pnqnqn+1+ ipnrnq
2
n+1− ipnpn+1qn+2 (26)

∂2rn = irn−2pn−1pn − ir2
n−1pnqn − irn−1pnrnqn+1. (27)

Analogously, looking for theV -matrices of the form

V −jn = λ2V −j+1
n +

(
α
−j
n λβ

−j
n

λγ
−j
n λ2δ

−j
n

)
(28)

and repeating the procedure described above one can obtain the ‘negative’ part of the ALH.
Some of the first of its equations are

∂−1qn = −iqn−1pn (29)

∂−1rn = ipnrn+1 (30)

∂−2qn = −iqn−2pn−1pn + iqn−1pnqnrn+1+ iq2
n−1pnrn (31)

∂−2rn = −iqn−1pnrnrn+1− ipnqnr
2
n+1+ ipnpn+1rn+2 (32)

where∂−j = ∂/∂z̄j and the overbar denotes the complex conjugation.
Before proceeding further I would like to note that the simplest equations of the ALH,

(24) and (29), when rewritten in terms of the real variablesx = Rez1 andy = Im z1 become
exactly the DNLSE (1) modified by the substitutionqn→ qn exp(2ix) and the DMKdV (2).

All equations of the ALH, as well as all equations of other integrable hierarchies, can
be presented in bilinear form using Hirota’s operators

Da
x . . . D

b
yu · v =

(
∂

∂x
− ∂

∂x ′

)a
. . .

(
∂

∂y
− ∂

∂y ′

)b
u(x, y, . . .)v(x ′, y ′, . . .)

∣∣∣∣
x ′=x,y ′=y,...

.

(33)

To this end consider the functionsτn, σn andρn defined by

pn = τn−1τn+1

τ 2
n

qn = σn

τn
rn = ρn

τn
. (34)

Note that originally we had two independent functions,qn andrn, for givenn. The quantity
pn defined in (3) has been introduced only for the sake of shortening the formulae. Now
we have three sets of functions (τn, σn, ρn for n = 0,±1, . . .). However, they are related by
the equationτn−1τn+1 = τ 2

n − σnρn which is the definition ofpn rewritten in bilinear form
and which will repeatedly appear in the following consideration (see (83) and (93) below).
The first equations of the ALH, (24) and (29), can then be rewritten, using the designation

Dj = Dzj D̄j = Dz̄j (35)

as

D1σn · τn = −iσn+1τn−1 (36)

D̄1σn · τn = −iσn−1τn+1. (37)

(The corresponding equations for the functionsρn can be obtained from these equations
using the involutionσn = −κρ̄n.) The next pair of equations of the ALH, (26) and (31),
can be presented as

D2σn · τn = D1σn+1 · τn−1 (38)

D1τn+1 · τn = iσn+1ρn (39)

and

D̄2σn · τn = D̄1σn−1 · τn+1 (40)

D̄1τn+1 · τn = −iσnρn+1. (41)
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The bilinear representation of the higher equations of the hierarchy will be discussed
below, and here I would like to mention only one remarkable fact. By simple calculations
one can obtain an alternative representation for the equations (38) and (39):

(iD2+D11)σn · τn = 0 (42)

(hereafter I will write Dx...y instead ofDx . . . Dy) which involves functions for only
one value of the indexn. In other words we have presented the differential-difference
equations (38) and (39) in a form typical topartial differential equation. Obviously,
equation (42) taken alone cannot be considered as a closed PDE system, to be such it
must be complemented with some other relations involvingσ andτ , which can be achieved
using other equations of the ALH (see e.g. (105) below). Analogously one can rewrite
equations (40) and (41) as well as all other equations of the ALH. It is a manifestation of
the fact that both ‘positive’ and ‘negative’ subhierarchies can be transformed into hierarchies
of (1+ 1)-dimensional evolution equations forq = qn and r = rn as functions ofz = z1

and zj , j = 2, 3, . . .. Indeed, expressing from (24) and (25)qn+1, qn+2 and rn−1 in terms
of q, qz, qzz, r, rz (here the subscripts indicate derivatives with respect toz) equations (26)
and (27) can be rewritten as

i∂2q + qzz + 2qqzrz
1− qr = 0 (43)

−i∂2r + rzz + 2rrzqz
1− qr = 0. (44)

All higher equations of the ‘positive’ hierarchy can be rewritten in a similar way. An
analogous procedure can be performed for the ‘negative’ part of the hierarchy. Some
general formulae for such a representation of the ALH will be obtained in section 5.

3. Solutions of the auxiliary problems

Now some solutions of the linear problems (4) and (5), which I rewrite now as,

∂j9n = V jn 9n (45)

will be constructed.
The question of solving (4) and (45) is not the main aim of this paper, but it is discussed

for illustrative purposes, to show how one can ‘deduce’ the functional representation of the
ALH which we are looking for, which can then be proved independently, without invoking
the results of this section. That is why some results (namely formulae (62) and (64)) are
written down without a presentation of their rigorous proof.

In what follows I will restrict myself to the simplest case

lim
n→∞ qn, rn = 0 (46)

or, in the{τ, σ, ρ}-representation,

lim
n→∞ σn, ρn = 0 lim

n→∞ τn = constant. (47)

Presenting the elements of the first column of the matrix9n as

9(1)
n = λn

τn

τn−1

(
ϕn
−λψn

)
(48)

one can obtain from (4) the following equations for the quantitiesϕn, ψn:

pnϕn+1 = ϕn − rnψn (49)

−λ2pnψn+1 = qnϕn − ψn (50)
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which will be solved under the boundary conditions

lim
n→∞ϕn = 1 lim

n→∞ψn = 0. (51)

This problem admits solutions that can be presented as power series inλ2:(
ϕn
ψn

)
=
∞∑
m=0

λ2m

(
ϕmn
ψm
n

)
. (52)

Substituting these series in (49) and (50) one can derive a system of equations for the
quantitiesϕmn andψm

n , which can be written as follows:

ϕmn − ϕmn−1 = −rn−1ψ
m−1
n (53)

ψm
n = qnϕmn + pnψm−1

n+1 . (54)

From this system and (51) one can obtain

ϕ0
n = 1 ψ0

n = qn. (55)

Using the identity

∂1 ln
τn

τn−1
= irn−1qn (56)

which follows from (39) one can perform an iteration:

ϕ1
n =

i

τn
∂1τn ψ1

n =
i

τn
∂1σn. (57)

Further, using

∂2 ln
τn

τn−1
= irn−2pn−1qn + irn−1pnqn+1− ir2

n−1q
2
n (58)

one can obtain

ϕ2
n =

1

2τn
(i∂2− ∂11)τn ψ2

n =
1

2τn
(i∂2− ∂11)σn. (59)

Iterating the system (53) and (54) further one can conclude that the quantitiesτnϕ
m
n and

τnψ
m
n are the coefficients of the Taylor expansion for the functionsτn(z1+iλ2, z2+iλ4/2, . . .)

andσn(z1+ iλ2, z2+ iλ4/2, . . .). Moreover, it can be shown that the column (48) with

ϕn = τn(zk + iλ2k/k, z̄k)

τn(zk, z̄k)
ψn = σn(zk + iλ2k/k, z̄k)

τn(zk, z̄k)
(60)

whereτn andσn are solutions of the ‘positive’ subhierarchy, solve the linear problems (45)
for j = 1, 2, . . .. Here the designation

f (zk, z̄k) ≡ f (z1, z2, . . . z̄1, z̄2, . . .) (61)

is used.
Considering in a similar way the second column of the matrix9n one can obtain the

following matrix solution for the linear problems of the ‘positive’ subhierarchy (i.e. the
problems (4) and (45) forj = 1, 2, . . .):

9+n =
1

τn−1(zk, z̄k)

(
λnτn(zk + iλ2k/k, z̄k) λ−n+1 exp(−iφ)ρn−1(zk − iλ2k/k, z̄k)

−λn+1σn(zk + iλ2k/k, z̄k) λ−n exp(−iφ)τn−1(zk − iλ2k/k, z̄k)

)
(62)

where

φ =
∞∑
k=1

λ−2kzk. (63)
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Analogously, for the linear problems of the ‘negative’ subhierarchy, (4) and (45) for
j = −1,−2, . . ., one can obtain the solution

9−n =
1

τn−1(zk, z̄k)

(
λn exp(iφ̃)τn−1(zk, z̄k + iλ−2k/k) −λ−n−1ρn(zk, z̄k − iλ−2k/k)

λn−1 exp(iφ̃)σn−1(zk, z̄k + iλ−2k/k) λ−nτn(zk, z̄k − iλ−2k/k)

)
(64)

where

φ̃ =
∞∑
k=1

λ2kz̄k. (65)

The obtained formulae (62) and (64) illustrate the fact that an integrable hierarchy
is more than a collection of solvable equations, and by considering a hierarchy one can
sometimes obtain more ‘transparent’ results than by dealing with one particular equation.
Such an approach (and such results) is not entirely new; it had been applied earlier to other
hierarchies, say AKNS [1], though, to the author’s knowledge, for the ALH this has been
done for the first time in this work.

4. The main result

In section 3 we constructed the matrices9+n (9−n ) which are solutions of the discrete
auxiliary problem (4) and the ‘positive’ (‘negative’) set of evolution linear problems (45).
Though the validity of these results should be discussed more precisely, they give us a
sufficient hint to obtain the main result of this work, namely, the functional representation
of the ALH. The matrix equation9+n+1 = Un9+n after some transformations can be rewritten
in the following way:

σn(zk + iλ2k/k, z̄k)τn(zk, z̄k)− σn(zk, z̄k)τn(zk + iλ2k/k, z̄k)

= λ2τn−1(zk, z̄k)σn+1(zk + iλ2k/k, z̄k) (66)

ρn(zk, z̄k)τn(zk + iλ2k/k, z̄k)− ρn(zk + iλ2k/k, z̄k)τn(zk, z̄k)

= λ2ρn−1(zk, z̄k)τn+1(zk + iλ2k/k, z̄k) (67)

τn(zk + iλ2k/k, z̄k)τn(zk, z̄k)− τn−1(zk, z̄k)τn+1(zk + iλ2k/k, z̄k)

= σn(zk + iλ2k/k, z̄k)ρn(zk, z̄k). (68)

Now we can forget about were these equations originate from and consider them as a system
of three difference-functionalequationsfor unknown functionsτn, σn andρn. This system
is compatible with all ‘positive’ flows of the ALH: ifτn, σn andρn solve (66)–(68) then
9+n satisfy all equations (45) forj = 1, 2, . . .. To prove this consider the quantities

Xjn = ∂jϕn − ajnϕn + λbjnψn (69)

Y jn = ∂jψn + λ−1cjnϕn − djnψn (70)

whereϕn, ψn are defined by

ϕn = τn(zk + iλ2k/k, z̄k)

τn−1(zk, z̄k)
ψn = σn(zk + iλ2k/k, z̄k)

τn−1(zk, z̄k)
. (71)

(Note that these functionsϕn, ψn differ from ones defined by (60) in the factorτn/τn−1)
andajn, . . . , d

j
n are elements of the matrixV jn (see (8).) Using the identities

ϕn+1− ϕn + rnψn = 0 (72)

λ2ψn+1− ψn + qnϕn = 0 (73)
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which follow from (66) and (68) it is straightforward to verify the fact that the combination
Xn+1−Xn + rnYn can be presented as

Xn+1−Xn + rnYn = ∂j [ϕn+1− ϕn + rnψn] + [ajn − ajn+1− λ−1qnb
j

n+1+ λ−1rnc
j
n]ϕn

+[−∂j rn + (ajn+1− djn )− λbjn + λ−1b
j

n+1]ψn. (74)

It can easily be seen from (72) together with (9) and (12) that all expressions in square
brackets are equal to zero, i.e.

Xn+1−Xn + rnYn = 0. (75)

Analogously, calculating in a similar wayλ2Yn+1− Yn + qnXn one can obtain

λ2Yn+1− Yn + qnXn = 0. (76)

PresentingXjn andY jn as

Xjn =
τn

τn−1

∞∑
m=0

λ2mXjn,m Y jn =
τn

τn−1

∞∑
m=0

λ2mY jn,m (77)

one can derive the following recurrence for the coefficientsX
j
n,m, Y jn,m:

Xjn,m −Xjn−1,m = −
ρn−1

τn
Y
j

n,m−1 (78)

Y jn,m = pnY jn+1,m−1+ qnXjn,m. (79)

It can be shown thatXn(λ = 0) = Yn(λ = 0) = 0, i.e. Xjn,0 = Y jn,0 = 0. Then, (78) yields

X
j

n,1 = constant, this constant, as follows from the boundary conditions forϕn andψn, is

zero,Xjn,1 = 0. This in turn, together with (79), leads toY jn,1 = 0, etc. Repeating iterations

one can obtainXjn = Y jn = 0, which implies that the column(ϕn,−λψn)T is a solution of
the equation

∂j

(
ϕn
−λψn

)
= V jn

(
ϕn
−λψn

)
. (80)

Thus, we have shown that equations (66)–(68), which I would like to rewrite in a more
symmetrical way using the substitutionszk → zk ∓ iλ2k/2k,

σn(zk + iδk/2k)τn(zk − iδk/2k)− σn(zk − iδk/2k)τn(zk + iδk/2k)

= δτn−1(zk − iδk/2k)σn+1(zk + iδk/2k) (81)

ρn(zk − iδk/2k)τn(zk + iδk/2k)− ρn(zk + iδk/2k)τn(zk − iδk/2k)

= δρn−1(zk − iδk/2k)τn+1(zk + iδk/2k) (82)

τn(zk + iδk/2k)τn(zk − iδk/2k)− τn−1(zk − iδk/2k)τn+1(zk + iδk/2k)

= σn(zk + iδk/2k)ρn(zk − iδk/2k) (83)

(hereδ is used instead ofλ2 and dependence on the conjugated coordinates,z̄k, is temporarily
omitted) are indeed compatible with the ‘positive’ flows (45) forj = 1, 2, . . ., and can be
considered as being equivalent to the ‘positive’ part of the ALH. Expanding (81)–(83) in
powers ofδ an infinite number of DDEs, that can be transformed to those from the ALH,
can be obtained. Thus, for example, the equations which correspond to the first power ofδ

(∂1σn)τn − σn(∂1τn) = −iτn−1σn+1 (84)

(∂1ρn)τn − ρn(∂1τn) = iρn−1τn+1 (85)
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are obviously the equations (24) and (25) rewritten in the{τn, σn, ρn}-representation. The
equations which correspond to the second power ofδ are equivalent to the second pair of
equations of the ALH, (26) and (27), etc.

Analogously, the ‘negative’ part of the ALH can be written as the following functional
equations:

σn(z̄k + iδ̃k/2k)τn(z̄k − iδ̃k/2k)− σn(z̄k − iδ̃k/2k)τn(z̄k + iδ̃k/2k)

= δ̃σn−1(z̄k + iδ̃k/2k)τn+1(z̄k − iδ̃k/2k) (86)

ρn(z̄k − iδ̃k/2k)τn(z̄k + iδ̃k/2k)− ρn(z̄k + iδ̃k/2k)τn(z̄k − iδ̃k/2k)

= δ̃τn−1(z̄k + iδ̃k/2k)ρn+1(z̄k − iδ̃k/2k) (87)

τn(z̄k + iδ̃k/2k)τn(z̄k − iδ̃k/2k)− τn−1(z̄k + iδ̃k/2k)τn+1(z̄k − iδ̃k/2k)

= σn(z̄k + iδ̃k/2k)ρn(z̄k − iδ̃k/2k) (88)

whereδ̃ is used instead ofλ−2 and dependence onzk is omitted.
Equations (81)–(83) and (86)–(88) are the main result of this paper. They present

an infinite number of the DDEs of the ALH under the zero boundary conditions (46) in
the form of six difference-functional equations. Thus we have derived the ‘functional’
representation of the ALH. Analogous results can be obtained for some other classes of
boundary conditions, say, for the so-called finite-density (qn → constant asn → ±∞)
or quasiperiodical ones. Before proceeding further I would like to mention the following
problem. We have split the ALH into two subhierarchies (the ‘positive’ and ‘negative’ ones)
which seems to be rather natural: one of the subhierarchies can be obtained from the other
using the complex conjugation. Nevertheless, it would be interesting to obtain, instead of
two sets of functional equations ((81)–(83) for the ‘positive’ hierarchy and (86)–(88) for the
‘negative’ one) one set of equations which takes into account both ‘positive’ and ‘negative’
flows. I cannot do this at present, and it will be a subject of following studies.

5. Hirota’s representation of the ALH

It is already known that theD-operators calculus invented by Hirota is not only an ingenious
tool for deriving some families of solutions for integrable equations. It is a convenient way
of operating with integrable hierarchies, which enables us to reveal some regularities in
their structure. Below are the main results in Hirota’s formalism, which will demonstrate
some interesting features of the ALH. In what follows I will deal only with ‘positive’
subhierarchy, because for the ‘negative’ one all results can be obtained using the complex
conjugation (σn = −κρ̄n, etc). Using the following property of the Hirota’s operators

exp{aDz}f (z) · g(z) = f (z + a)g(z − a) (89)

and introducing

D(δ) =
∞∑
k=1

δk

k
Dk (90)

one can rewrite (81)–(83) as

exp

[
i

2
D(δ)

]
(σn · τn − τn · σn − δσn+1 · τn−1) = 0 (91)

exp

[
i

2
D(δ)

]
(ρn · τn − τn · ρn + δτn+1 · ρn−1) = 0 (92)

exp

[
i

2
D(δ)

]
(τn+1 · τn−1− τn · τn + σn · ρn) = 0. (93)
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One of the advantages of this viewpoint is that one can obtain an explicit form of thej th
equation of the ALH, which is difficult to do in the framework of the standard IST technique
discussed in the section 2. This can be done in terms of the Schur’s polynomials

exp

{ ∞∑
m=1

xmfm

}
=
∞∑
m=0

xmχm(f1, f2, . . .). (94)

(I will use below the designationχm(fk) ≡ χm(f1, f2, . . .).) By simple calculations
equations (91) and (92), which can be rewritten as,

2i sin

[
1

2
D(δ)

]
σn · τn = δ exp

[
i

2
D(δ)

]
σn+1 · τn−1 (95)

2i sin

[
1

2
D(δ)

]
ρn · τn = −δ exp

[
i

2
D(δ)

]
τn+1 · ρn−1 (96)

and equation (93) can be presented as{
χj

(
iDk

2k

)
− χj

(
− iDk

2k

)}
σn · τn = χj−1

(
iDk

2k

)
σn+1 · τn−1 (97){

χj

(
iDk

2k

)
− χj

(
− iDk

2k

)}
ρn · τn = −χj−1

(
iDk

2k

)
τn+1 · ρn−1 (98)

χj

(
iDk

2k

)
(τn+1 · τn−1− τn · τn + σn · ρn) = 0 (99)

for j = 1, 2, . . ..
It was noted in section 2 that ‘positive’ subhierarchy of the ALH (as well as the

‘negative’ one) can be presented as a hierarchy of PDEs, which can easily be derived
from (81)–(83). Using the identities

D1σn(zk + iδk/2k) · τn(zk − iδk/2k) = −iσn+1(zk + iδk/2k)τn−1(zk − iδk/2k) (100)

D1τn(zk + iδk/2k) · ρn(zk − iδk/2k) = −iτn+1(zk + iδk/2k)ρn−1(zk − iδk/2k) (101)

D1τn(zk + iδk/2k) · τn(zk − iδk/2k) = iδσn+1(zk + iδk/2k)ρn−1(zk − iδk/2k) (102)

which follow from (71) and (80) forj = 1, equations (81)–(83) can be rewritten as

Ĝ(δ)

(
σ · τ
τ · ρ

σ · ρ + τ · τ

)
= 0 (103)

whereσ , ρ and τ stand forσn, ρn and τn with n being fixed and the operator̂G(δ) is
defined by

Ĝ(δ) = 2i sin

[
1

2
D(δ)

]
− iδD1 exp

[
i

2
D(δ)

]
. (104)

Expanding (103) in power series inδ one can obtain a hierarchy of partial differential
equations

Ĝj

(
σ · τ
τ · ρ

σ · ρ + τ · τ

)
= 0 j = 2, 3, . . . (105)

where operatorŝGj are defined by

Ĝ(δ) =
∞∑
j=2

δj

j
Ĝj . (106)
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Some first equations of this hierarchy are ones given by (105) with

Ĝ2 = iD2+D11 (107)

Ĝ3 = iD3+ 3

4
D21+ i

4
D111 (108)

Ĝ4 = iD4+ 2

3
D31+ i

4
D211− 1

12
D1111. (109)

A rather interesting consequence of (81)–(83) can be obtained by excludingσn andρn.
It is straightforward to show, using (71) and (80) forj = 1, 2, that

[2D1− δ(D2+ iD11)]τn(zk + iδk/2k) · τn(zk − iδk/2k) = 0 (110)

or, again using the exp[iD(δ)/2] operator,

[2D1− δ(D2+ iD11)] exp

[
i

2
D(δ)

]
τ · τ = 0 (111)

whereτ ≡ τn (for anyn). Expanding this equation in powers ofδ one can again obtain an
infinite number of equations, this time for one function,τ . The first few of them are

(4D31− 3D22+D1111)τ · τ = 0 (112)

(3D41− 2D32+D2111)τ · τ = 0 (113)

(96D51− 60D42+ 20D3111+ 15D2211−D111111)τ · τ = 0. (114)

It is interesting that equation (112) is nothing other than the KP equation. Indeed, it can
be verified by straightforward (though rather cumbersome) calculations that the quantity
u = rn−1pnqn+1 for any n solves the equation

∂1(4∂3u+ ∂111u+ 12u∂1u) = 3∂22u. (115)

So, we have obtained a remarkable result: the KP equation turns out to be ‘embedded’ in
the ALH!

6. Conclusion.

In this work a representation of the ALH in the form of difference-functional equations
has been obtained. This result is interesting from several viewpoints. First, it clearly
demonstrates a common origin of all equations of the hierarchy. Second, such an approach
can be useful as an easy tool for generating a large number of solutions for the ALH, such
as multisoliton, ‘Wronskian’ and some others. An interesting transformation of the results
obtained arises when one considers the problem of quasiperiodic solutions. The functional
relations (81)–(83) and (86)–(88) become the Fay’s trisecant formulae for theθ -functions.
This means that the ALH can be used to describe flows over the finite-genus Riemann
surfaces and to characterize such surfaces. To my knowledge, such algebro-geometrical
aspects of the ALH have not been discussed in literature.

Of more interest is the question of the ‘universality’ of the ALH. It is known that some
equations can be ‘embedded’ into the ALH. It has been shown that the ALH ‘contains’
the 2D Toda lattice [9] (see also [13]), O(3, 1) σ -model [14], the Davey–Stewartson (DS)
equation and the Ishimori model [15]. In the last paper it was shown that the derivative
nonlinear Schr̈odinger equation can be ‘embedded’ into the ALH, which implies that the
same can also be done for the AKNS. In this paper I have shown that the KP equation
(hierarchy) can also be composed of the ALH flows. An impression arises that the ALH
possesses some kind of ‘universality’: almost all ‘classical’ hierarchies, such as the AKNS,
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DS, KP hierarchies, may be ‘constructed’ from the ALH. The results of the works [9, 13–15]
(see also [16, 17]) are in some sense ‘empirical’ facts: they can be easily verified by simple
calculations, but this does not answer the question of why such apparently different models
turn out to be interrelated. The approach described above, especially the results presented
in section 5, provides some insight into this problem.

It is known that an integrable system is much more than a set of solvable equations. One
of the best illustrations of this thesis is the KP equation. It was derived to describe nonlinear
waves in weakly dispersive media, but in the last two decades there has been an immense
number of works devoted to this equation, which are far from the hydrodynamics or theory
of the acoustic waves, where it originally appeared. The KP equation and its hierarchy
has been considered from different viewpoints. It has been studied in the framework of
the theory of Grassmannians, representation theory of the Kac–Moody algebras and it has
been applied to the problem of characterization of the Jacobi varieties, etc. Returning to
the ALH one has to admit that studies of this hierarchy were mostly restricted to ‘practical’
problems, i.e. to questions related to solving its equations. At present we have a wide range
of solutions but know little about the theoretical aspects of the ALH. Having presented
the ALH in the bilinear form, (81)–(83) and (86)–(88), we came close to the range of
problems which arise naturally when an integrable system is considered not only as a set
of equations that should be solved, but from a more general viewpoint. Comparing the
functional equations obtained above with, e.g. the analogous equations for theτ -functions
of the KP hierarchy one can see that the ALH is in some sense richer: instead of one
τ -function we have an infinite number of triplets{τn, σn, ρn} (note that the last two,σn and
ρn, in contrast toτn, are complex). Hence, one can expect that all group-theoretical and
algebro-geometrical constructions revealed behind the KP hierarchy can be found, even in
some extended form, in the case of the ALH. Thus, this work can be viewed as a starting
point to a series of studies that will link the ALH with the theory of Grassmannian manifolds,
representation theory of infinite-dimensional algebras. Another interesting problem is the
operator (bosonic/fermionic) content of the ALH. Note that the question of Hamiltonian
structures that can be associated with the hierarchy considered has not been touched in this
paper. These problems cannot be analysed in the framework of one paper and these issues
will be addressed in following investigations.
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